Functional requirements:
- Text/images -> URL. (Max 10 MB.)
. TTL: expiry time for URLs.
- Don't allow edits.
- Stretch goals:
- Password protected content.
- Custom URLs.

Non-functional requirements:
. Highly available and durable.

+ Strong consistency = read-after-write.

Estimations:
- Assumptions:
- T100M users.
- 5 pastes per user per month.
- Write to read ratio: 1:10
- Average paste size: 100 KB.
- 20% content gets 80% traffic.
- Storage:

- Per month: 100M * 5 * * 100KB = 5 TB.

- Cache size: 1 TB.
- For 5years: 5% 60 =300 TB.
- Request rate:

Frontend service
(with a load

balancer)

Paste content

Cache

Log/metric
ingestion service

- Writes: 100M * 5/ 2.5M = 200 writes per second.

- Reads: 2k per second.

Paste
metadata

User info

Key generation service

Data stores:
- Paste content:
- Text or images.
- Encrypted by user password for password protected
pastes.
- Encrypted-at-rest by default.
- Could be compressed - subject to load testing.
% TIL.
- Paste metadata:
- NoSQL DB.
- Keyed by paste-id. "Value" could contain user-id,
timestamp, password-protection, expiration time etc.
- User info:

URL generation:
- UUIDs: 128 bits in size = 32 hex characters. Plus, 4 hyphens, so 36
character/byte long IDs.
- SHA/MDS5 hash of user content + user-id -> 128 bits of info.
- [a-zA-Z0-9_.] - 64 characters.
- 6 bits per character.
- Want 8 character long IDs = 6418
- 8%6 = 48 bits out of 128 bits that we generated by the
hash.
. In case of collisions, "+ random number".
- Key generation service.

Cache usage:
- Write to cache async if we got a cache miss on read.
- (Recently created content might be more popular.) We always
write to cache whenever users create content.

How to store data:
- Update content first, metadata second.



